
PEDESTRIAN CRASH ASSESSMENT

URBAN DATA PIONEERS COHORT 6 SEPTEMBER 5, 2019 - NOVEMBER 21, 2019

PROJECT OVERVIEW

FOR EACH CRASH, DETERMINE:

- Crash distance from a legal crosswalk (any street intersection)
- Crash distance from the closest pedestrian focused crossing (where cars are required to make a full stop including stop signs and traffic lights)

15 PEDESTRIANS

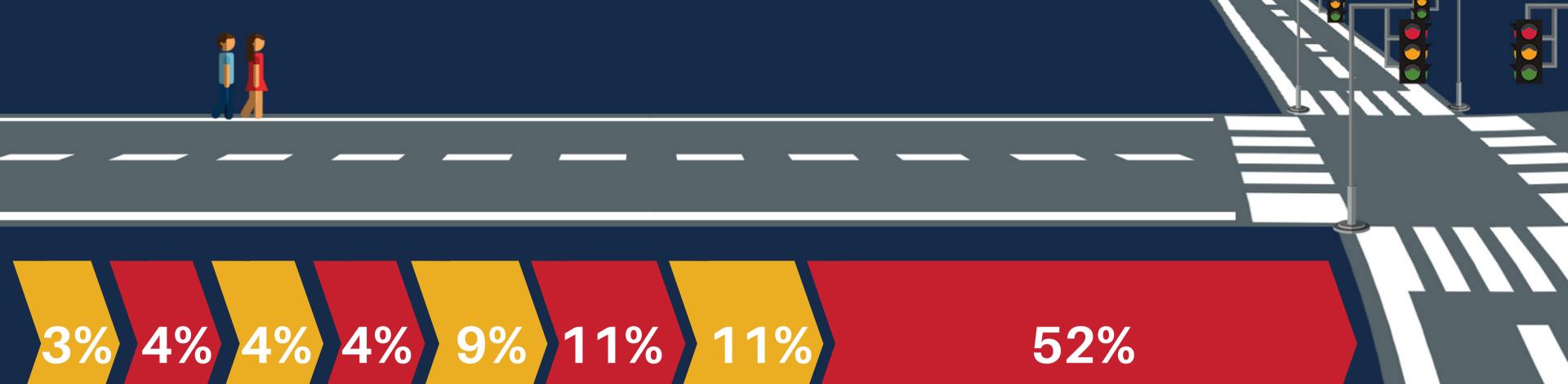
killed each year in pedestrian-vehicle crashes, per ODOT SAFE-T database

1.75x
NATIONAL AVERAGE

Bicycle and Pedestrian Advisory Committee

Began an assessment of these crashes to identify underlying characteristics

DATASETS


- City of Tulsa Signalized Intersections
- TPD Crash Reports (TRACIS)
- ODOT SAFE-T Crash Reports

DATA LIMITATIONS:

- Not all marked crosswalks included
- Access to data due to PII (resolved)
- Location resolution is 1/2 block

PROCESS

7-8 6-7 5-6 4-5 3-4 2-3 1-2 LESS THAN 1 BLOCK

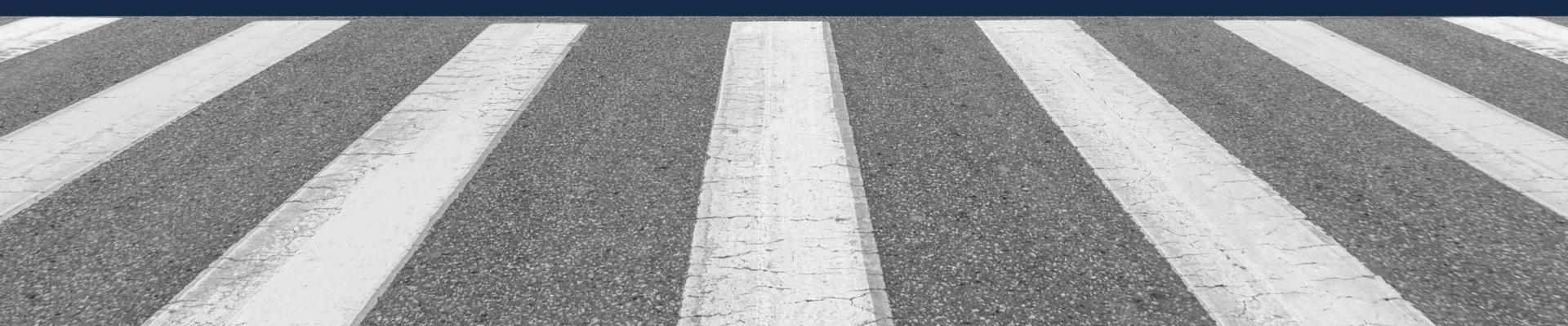
DISTANCE FROM INTERSECTION

1,040 TOTAL CRASHES INVOLVING PEDESTRIANS

Measured in blocks

January	:	2 1	0	0	0	1	2	6	/ 2	2	1	1	3	2	2	5	8	8	10	11	4	3	3
February	Į.	0	1	1	0	1	3	4	0	2	3	4	1	1	6	6	5	6	6	6	5	7	5
March	3	3	1	0	0	0	1	<u>_3</u>	4	1	2	2	2	3	3	5	6	6	3	8	13	3	4
April	4	1 1	1	2	1	0	1	1	3	2	2	3	8	3	8	8	5	5	5	1	6	5	6
May	9	2	0	1	0	1	1	3	5	4	3	1	2	5	7	11	9	3	5	3	6	5	2
June	3	0	1	1	0	1	2	2	2	1	6	2	7	5	3	8	3	6	3	1	3	7	5
July	3	3 2	2	0	0	1	1	1	0	3	3	5	3	2	2	1	4	5	1	4	1	6	6
August		7 2	1	0	1	1	2	3	4	0	5	1	2	1	2	6	7	6	5	2	4	4	6
September	8	3 1	1	1	2	1	2	10	6	3	2	3	1	2	5	5	5	7	4	5	8	8	3
October		L 5	3	1	1	3	4	5	4	1	3	6	1	6	8	16	12	11	2	13	16	8	7
November	10	0	0	0	0	0	1	4	3	1	1	1	5	6	6	6	7	15	16	8	3	5	5
December		2 2	1	0	0	0	5	5	0	5	2	3	3	1	4	10	5	11	17	4	3	2	3
	12:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00

TIME OF DAY


WITH NOTATION OF SUNRISE & SUNSET

FINDINGS

DISTANCE ANALYSIS: • Results point to intersections or near intersections.

TIME ANALYSIS:

- Confirmation that sunset and dusk are factors.
- A spike at 7:00 am in September correlated to sun alignment with streets.

RECOMMENDATIONS BASED ON DISTANCE ANALYSIS

- City of Tulsa prioritize intersection improvements at locations with high incidents of pedestrian-vehicle crashes
- Evaluate 1-block behaviors by all parties, including right turns on red lights and mid-block crossings
 - Police reports
 - Secondary research
 - Manual observation at intersections with high numbers of incidents

RECOMMENDATIONS BASED ON TIME ANALYSIS

- Conduct additional research on sunlight glint
 - Similar results for Tulsa and Oklahoma City
 - Are we unique based on position in time zone, latitude, street orientation?
- Identify non-infrastructure opportunities, including public education and reflective clothing.

TEAM MEMBERS

Mitch Drummond, Project Sponsor

Russell Deming

Kevin Gustavson

Nathan Leigh

Emrys Moreau

Chase Phillips

Hannah Ralston

Ty Simmons

Peter Som de Cerff

Dan Sterba

John Tankard

Anthony West

Thank you to Ben Harris for all the assistance!