Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-
compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ
transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at
risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC
guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants
are available from the Safe Drinking Water Hotline (phone (800) 426-6791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young
children. Lead in drinking water is primarily from materials and components associated with service lines and home
plumbing. The City of Tulsa is responsible for providing high quality drinking water, but cannot control the variety of
materials used in plumbing components. When your water has been sitting for several hours, you can minimize the
potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.
If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking
water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline
or at http://www.epa.gov/safewater/lead.

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience
problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

In our mission to provide the highest quality water, the City of Tulsa joined the Partnership for Safe Water, a national volunteer initiative developed by the United States Environmental Protection Agency (EPA), American Water Works Association (AWWA), states and the water supply community. Our participation in this program will help ensure that our customers are receiving the highest quality drinking water and are protected from microbial contaminants such as Cryptosporidium.

For more information on the City of Tulsa’s participation in the Partnership for Safe Water, contact Rachel Cancienne (918) 576-5369.

How to Contact Us:

- For Water Quality Questions or Concerns: Water Quality Assurance (918) 596-2511
- For taste and color concerns or line breaks: Water Emergency dispatcher at (918) 596-9488.
- For Billing questions: Customer Service at (918) 596-9511.
- This report can be found on the internet at http://www.cityoftulsa.org/city-services/water/quality.aspx

TMUA members

Lauren Broekey, Chair
Jack Neely
Jim Cameron
Richard Hudson
R. Louis Reynolds
Richard Sevenoaks
Mayor Dewey Bartlett
www.cityoftulsa.org/cityservices/water/TMUA.aspx

The Tulsa Metropolitan Utility Authority (TMUA) Invites You To Get Involved

Meetings that deal with decisions about our water are held on the 2nd and 4th Wednesdays of the month. Agendas are posted on the electronic marquee in the City Hall entry at 2nd and Cincinnati, and online at www.cityoftulsa.org. We encourage our customers to participate in the decisions that affect the quality of our drinking water.

For more information about meetings, call (918) 596-1824 or write to: TMUA, 175 E. 2nd Street Suite 890, Tulsa, OK 74103.

Tulsa’s Annual Water Quality Report — 2012

Este informe contiene información muy importante. Tradúzcalo o hable con un amigo quien lo entienda bien.

Our city’s top priority is to provide clean, good-tasting water to its customers. Tulsa water is safe to drink and free of bacteria and harmful substances. City chemists and plant operators test the water when it enters the pipes at our source water lakes. They continue to monitor the water throughout treatment and distribution. When the water leaves the treatment plant and flows toward Tulsa’s homes and businesses, it not only meets, but surpasses all federal requirements for purity.

Rainwater flows down hill both over the land and under the ground to collect in streams and in our lakes. As water travels to our lakes, it dissolves minerals naturally found in rocks and soil. The water can also pick up harmful materials like pesticides, herbicides and bacteria left in and on the ground after human or animal activity.

Tulsa’s drinking water comes from three lakes in northeastern Oklahoma: (1) Lake Oologah on the Verdigris River (in Rogers and Nowata counties), (2) Lakes Spavinaw and Eucha on Spavinaw Creek (in Mayes and Delaware counties), and (3) Lake Hudson on the Neosho River (in Mayes County). Water experts analyze water samples from the lakes to determine our source water quality.

Water flows from the source lakes through pipes to Tulsa’s two water treatment plants. Water experts test water samples of the treated water that leaves the two treatment plants. After the water leaves the treatment plants, water experts test more samples within the distribution system. Water experts test over 5,000 samples each year to be sure the water Tulsa supplies to homes and businesses is of the highest quality. This report tells you the final test results from samples taken during 2011.

The Environmental Protection Agency (EPA) limits how much of a harmful substance is in the public water supply after water treatment. The Food and Drug Administration (FDA) sets similar limits for bottled water.

The Oklahoma Department of Environmental Quality (ODEQ) has studied our source lakes. Their Source Water Assessment showed that human activities could pollute this water. If you’d like to know more about this study, or how the ODEQ works to protect source water, contact them at (405) 702-8100. You may also visit www.deq.state.ok.us/wqdnew/sourcewater/index.html for more information.

Which Plant Treats Your Drinking Water?

Water moves through more than 2,200 miles of underground water lines from Tulsa’s treatment plant to water faucets throughout the City of Tulsa. Usually, residents in the north and west portions of Tulsa receive water treated at the Mohawk plant. Those living in the south and east areas of Tulsa receive water from the A.B. Jewell plant. Both plants serve the central areas of the city. Because of daily changes in supply and demand both plants can serve all areas of the city when necessary.
City of Tulsa 2011 Water Quality Data

This table shows data collected during 2011. Tests made by professionals after water treatment showed that the levels of all contaminants found were much less than the levels that are cause for concern.

Definitions:
- **MCL** = Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **MCLG** = Maximum Contaminant Level Goal: The level of contaminant in drinking water below which there is no known or expected health risk.
- **MRDL** = Maximum Residual Disinfectant level: The highest level of disinfectant allowed in drinking water.
- **AL** = Action Level: The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement which a water system must follow.
- **mrem/yr** = millirems per year (a measure of radiation absorbed by the body).
- **pCi/L** = picoCurie per liter of water (a measure of radioactivity).
- **TT** = Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
- **NTU** = Nephelometric Turbidity Unit

Data collected August 2010. Monitoring frequency is in compliance with regulation requirement.

Regulated Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average</th>
<th>Minimum</th>
<th>Maximum</th>
<th>MCLG</th>
<th>Likely Source of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity Level found (monthly)</td>
<td>0.08</td>
<td>0.00</td>
<td>0.46%</td>
<td>n/a</td>
<td>Soil runoff.</td>
</tr>
<tr>
<td>Lowest monthly % meeting regs</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>n/a</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Total Coliform Bacteria within distribution system (monthly)</td>
<td>0.06%</td>
<td>0.06%</td>
<td>0.46%</td>
<td>0</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Barium</td>
<td>0.047</td>
<td>0.034</td>
<td>0.063</td>
<td>2</td>
<td>Naturally present in the environment, drilling waste, metal refineries.</td>
</tr>
<tr>
<td>Beta Particles***</td>
<td>2.42</td>
<td>2.17</td>
<td>2.66</td>
<td>0</td>
<td>Decay of natural and man-made mineral deposits.</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1.8</td>
<td>0.76</td>
<td>3.2</td>
<td>4</td>
<td>Water additive to control microbes.</td>
</tr>
<tr>
<td>Chlorite</td>
<td>0.094</td>
<td>0</td>
<td>0.21</td>
<td>0.8</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Copper**</td>
<td>0.17 ppm at the 90th percentile</td>
<td>0.002 ppm at the 90th percentile</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits, leaching from wood preservatives.</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.68</td>
<td>0.07</td>
<td>1.3</td>
<td>2</td>
<td>Erosion of natural deposits, water additive which promotes strong teeth, discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Halo Acetic Acids</td>
<td>0.016</td>
<td>0</td>
<td>0.055</td>
<td>n/a</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Lead**</td>
<td><0.002 ppm at the 90th percentile</td>
<td><0.002 ppm at the 90th percentile</td>
<td>1.0</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>Nitrate – Nitrite</td>
<td>0.10</td>
<td>0</td>
<td>0.34</td>
<td>10; 1</td>
<td>Naturally occurring, fertilizers, sewage treatment plants, leaching from septic tanks.</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>2.1</td>
<td>1.2</td>
<td>3.4</td>
<td>n/a</td>
<td>Naturally found in the environment.</td>
</tr>
<tr>
<td>Trihalomethanes</td>
<td>0.052</td>
<td>0.013</td>
<td>0.092</td>
<td>n/a</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Unregulated Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average</th>
<th>Minimum</th>
<th>Maximum</th>
<th>MCLG</th>
<th>Likely Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>14</td>
<td>9.8</td>
<td>18</td>
<td>n/a</td>
<td>Naturally present, brine from oilfield operations</td>
</tr>
<tr>
<td>Iron</td>
<td>0.004</td>
<td>0</td>
<td>0.016</td>
<td>n/a</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Sodium</td>
<td>11.2</td>
<td>7.24</td>
<td>15.9</td>
<td>n/a</td>
<td>Naturally occurring, urban stormwater runoff or discharge from sewage treatment plants.</td>
</tr>
<tr>
<td>Sulfate</td>
<td>22</td>
<td>4.5</td>
<td>60</td>
<td>n/a</td>
<td>Naturally present in the environment.</td>
</tr>
</tbody>
</table>