Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Tulsa is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

In our mission to provide the highest quality water, the City of Tulsa joined the Partnership for Safe Water, a national volunteer initiative developed by the United States Environmental Protection Agency (EPA), American Water Works Association (AWWA), states and the water supply community. Our participation in this program will help ensure that our customers are receiving the highest quality drinking water and are protected from microbial contaminants such as Cryptosporidium.

For more information on the City of Tulsa’s participation in the Partnership for Safe Water, contact Rachel Watts (918) 576-5369.

How to Contact Us:

- For Water Quality Questions or Concerns: Water Quality Assurance (918) 591-4378
- For taste and color concerns or line breaks: Water Emergency dispatcher at (918) 596-0488.
- For Billing questions: Customer Service at (918) 596-9511.
- This report can be found on the internet at http://www.cityoftulsa.org/city-services/water/quality.aspx

In our mission to provide the highest quality water, the City of Tulsa joined the Partnership for Safe Water, a national volunteer initiative developed by the United States Environmental Protection Agency (EPA), American Water Works Association (AWWA), states and the water supply community. Our participation in this program will help ensure that our customers are receiving the highest quality drinking water and are protected from microbial contaminants such as Cryptosporidium.

For more information on the City of Tulsa’s participation in the Partnership for Safe Water, contact Rachel Watts (918) 576-5369.

Tulsa’s Annual Water Quality Report — 2014
Este Informe contiene información importante.

Our city’s top priority is to provide clean, good-tasting water to its customers. Tulsa water is safe to drink and free of bacteria and harmful substances. City chemists and plant operators test the water when it enters the pipes at our source water lakes. They continue to monitor the water throughout treatment and distribution. When the water leaves the treatment plant and flows toward Tulsa’s homes and businesses, it not only meets, but surpasses all federal requirements for purity.

Rainwater flows downhill both over the land and under the ground to collect in streams and in our lakes. As water travels to our lakes, it dissolves minerals naturally found in rocks and soil. The water can also pick up harmful materials like pesticides, herbicides and bacteria left in and on the ground after human or animal activity.

Tulsa’s drinking water comes from three lakes in northeastern Oklahoma: (1) Lake Oologah on the Verdigris River (in Rogers and Nowata counties), (2) Lakes Spavinaw and Eucha on Spavinaw Creek (in Mayes and Delaware counties), and (3) Lake Hudson on the Neosho River (in Mayes County). Water samples from the lakes are analyzed to determine quality.

Water flows from the source lakes through pipes to Tulsa’s two water treatment plants, where it is purified to meet drinking water and public health standards. City chemists and plant operators analyze over 5,000 samples each year to be sure the water supplied to homes and businesses is of the highest quality. This report is a summary of test results from samples taken during 2013.

The Environmental Protection Agency (EPA) limits how much of a harmful substance is in the public water supply after water treatment. The Food and Drug Administration (FDA) sets similar limits for bottled water.

The Oklahoma Department of Environmental Quality (ODEQ) has studied our source lakes. Their Source Water Assessment showed that human activities could pollute this water. If you’d like to know more about this study, or how the ODEQ works to protect source water, contact them at (405) 702-8100. You may also visit www.deq.state.ok.us/wqdnew/sourcewater/index.html for more information.

Which Plant Treats Your Drinking Water?
Water moves through more than 2,200 miles of underground water lines from Tulsa’s treatment plants to water faucets throughout the City of Tulsa. Usually, residents in the north and west portions of Tulsa receive water from the Mohawk plant. Those living in the south and east areas of Tulsa receive water from the A.B. Jewell plant. Both plants serve the central areas of the city. Because of daily changes in supply and demand, both plants can serve all areas of the city when necessary.
City of Tulsa 2013 Water Quality Data

This table shows data collected during 2013. Analyses made by professionals after water treatment showed that the levels of all contaminants found were much less than the levels that are cause for concern.

*Definitions:
AL = Action Level: The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement which a water system must follow.
LRAA = Locational Running Annual Average: Average calculated at each monitoring location
MCL = Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as feasible using the best available treatment technology.
MCLG = Maximum Contaminant Level Goal: The level of contaminant in drinking water below which there is no known or expected health risk.
MRDL = Maximum Residual Disinfectant level: The highest level of disinfectant allowed in drinking water. MRDLs are set as close to the MRDLG as feasible using the best available treatment technology.
MRDLG = Maximum Residual Disinfectant Level Goal: The level of residual disinfectant allowed in drinking water. MRDLGs are set as close to the MRDL as feasible using the best available treatment technology.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

**Data collected September 2010. Monitoring frequency is in compliance with TT = Treatment Technique:
s.u. = Standard Units
pCi/L = picoCurie per liter of water: A measure of radioactivity
s.u. = Standard Units
NTU = Nephelometric Turbidity Unit
mrem/yr = millirems per year
MRDL = Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MRDLs are set as close to the MRDLG as feasible using the best available treatment technology.
MCL = Maximum Contaminant Level Goal: The level of contaminant in drinking water below which there is no known or expected health risk.

TT = Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Likely Source of Contaminants
- Naturally present, brine from oilfield operations.
- Naturally present in the environment.
- Naturally present in the environment, adjusted in drinking water treatment.
- Naturally occurring, fertilizers, sewage treatment plants, leaching from septic tanks.
- Naturally present, urban stormwater runoff or discharge from sewage treatment plants.
- Naturally present in the environment, drilling waste, metal refineries.
- Naturally present, fertilizers, sewage treatment plants, leaching from septic tanks.
- Naturally present, soil runoff.
- Naturally present, brine from oilfield operations.
- Naturally occurring, fertilizers, sewage treatment plants, leaching from septic tanks.
- Naturally present, corrosion of household plumbing systems, erosion of natural deposits.
- Naturally occurring, fertilizers, sewage treatment plants, leaching from septic tanks.
- Naturally present, corrosion of household plumbing systems, erosion of natural deposits.

**Data collected September 2010. Monitoring frequency is in compliance with regulation.

<table>
<thead>
<tr>
<th>Regulated Contaminants</th>
<th>Level Found</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Maximum Contaminant Level (MCL*)</th>
<th>MCLG*</th>
<th>Likely Source of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity Level found</td>
<td>0.20</td>
<td>0.20</td>
<td>TT*
less than 0.3 NTU 95 percent of the time.</td>
<td>n/a</td>
<td>Soil runoff.</td>
<td></td>
</tr>
<tr>
<td>Lowest monthly % meeting regs.</td>
<td>100%</td>
<td>0.44% (monthly)</td>
<td>Presence of coliform bacteria in more than 5 percent of monthly samples.</td>
<td>0</td>
<td>Naturally present in the environment.</td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria within distribution system</td>
<td>0.051</td>
<td>0.033</td>
<td>0.062</td>
<td>2 parts per million</td>
<td>2</td>
<td>Naturally present in the environment, drilling waste, metal refineries.</td>
</tr>
<tr>
<td>Barium</td>
<td>2.42</td>
<td>2.17</td>
<td>2.66</td>
<td>50 pCi/L* (4 mrem/yr*)</td>
<td>0</td>
<td>Decay of natural and man-made mineral deposits.</td>
</tr>
<tr>
<td>Beta Particles**</td>
<td>2.4</td>
<td>2.2</td>
<td>2.4</td>
<td>MRDL* = 4.0 parts per million annual average</td>
<td>4</td>
<td>Water additive to control microbes.</td>
</tr>
<tr>
<td>Total Chlorine</td>
<td>0.11</td>
<td>0</td>
<td>0.21</td>
<td>1 part per million</td>
<td>0.8</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Chlorite</td>
<td>0.19 ppm at the 90th percentile; 0 sites above AL</td>
<td>AL* = 1.3 parts per million at 90th percentile</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits, leaching from wood preservatives.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.65</td>
<td>0.06</td>
<td>1.1</td>
<td>4 parts per million</td>
<td>4</td>
<td>Erosion of natural deposits, water additive which promotes strong teeth, discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Lead</td>
<td>0 ppm at the 90th percentile; 0 sites above AL</td>
<td>AL* = 15 parts per billion at 90th percentile</td>
<td>0</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate – Nitrite</td>
<td>0.1</td>
<td>0</td>
<td>0.4</td>
<td>Nitrate=10 parts per million; Nitrite=1 part per million</td>
<td>10; 1</td>
<td>Naturally occurring, fertilizers, sewage treatment plants, leaching from septic tanks.</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>2.0</td>
<td>1.4</td>
<td>2.7</td>
<td>Results are parts per million. MCL is TT*=
percent removal</td>
<td>n/a</td>
<td>Naturally found in the environment.</td>
</tr>
<tr>
<td>Haloacetic Acids</td>
<td>21</td>
<td>6</td>
<td>32</td>
<td>60 parts per billion LRAA*</td>
<td>n/a</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>48</td>
<td>23</td>
<td>51</td>
<td>90 parts per billion LRAA*</td>
<td>n/a</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unregulated Contaminants</th>
<th>Average</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Recommended Level</th>
<th>Likely Source of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>n/a</td>
<td>7.3</td>
<td>8.4</td>
<td>Aesthetic level 6.5-8.5 s.u.*</td>
<td>Measure of acidity. Naturally present, adjusted in drinking water treatment.</td>
</tr>
<tr>
<td>Chloride</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>Aesthetic level 250 parts per million</td>
<td>Naturally present, brine from oilfield operations.</td>
</tr>
<tr>
<td>Sodium</td>
<td>9.82</td>
<td>7.71</td>
<td>12.4</td>
<td>Standard has not been established</td>
<td>Naturally present, urban stormwater runoff or discharge from sewage treatment plants.</td>
</tr>
<tr>
<td>Sulfate</td>
<td>23</td>
<td>4.7</td>
<td>45</td>
<td>Aesthetic level 250 parts per million</td>
<td>Naturally present in the environment.</td>
</tr>
</tbody>
</table>