Nitrification Control in the Distribution System to Reduce Resource Requirements

> Lean Six Sigma Black Belt Project by pHishbone out of H₂O

> > January 25, 2018

Project team

- Team members:
 - Melissa Gray, Project Manager, LSS black belt candidate
 - Stefanie Hunter, LSS black belt candidate
 - Eric Lee, LSS black belt candidate
 - Eric Parker, LSS black belt candidate
 - Benita Becton, LSS green belt
 - Jhoanna Murray, LSS green belt

Training and project

- Classroom training conducted August 1st through August 31st
 - Conducted by Walter Miller and Mark Reid through Oklahoma City Community College
- Project team met each Thursday afternoon from September 2017 to January 2018
- Benita Becton and Jhoanna Murray were added to the team as the project progressed

Define Phase

Project selection and process

- Nitrification Control in the Distribution System to Reduce Resource Requirements
 - Historical data related to nitrification in the distribution system was analyzed to determine if there were opportunities available to reduce the amount of resources required to respond to water quality events that required additional resources

History

- In July 2012, the City of Tulsa switched from chlorine to chloramines for secondary disinfection of the water distribution system.
- The switch was to ensure compliance with the EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule.
- The regulation reduces the risk of disinfection byproducts that can form when free chlorine combines with naturally occurring organic matter in the water.

What is nitrification?

- Chloramines are formed by adding ammonia that binds to the free chlorine.
- Nitrification occurs when microbes present in the biofilm lining the distribution pipes consume the available ammonia then sequentially oxidize it to form nitrites and nitrates, which are regulated contaminants.

2017 Monitoring sites

Compliance Monitoring

- 111 sites approved by ODEQ
- Monitored twice monthly
- Minimum of 2,664 annual tests

Nitrite Monitoring

- Goes above and beyond compliance
- Early detection/mitigation of potential nitrification conditions

Nitrification Monitoring and Response

- Storage tanks are located throughout the City to equalize daily demands and to ensure adequate pressures throughout the water supply system.
- Tanks provide critical storage needed for firefighting purposes.
- Of the City's total storage capacity of roughly 104.5 million gallons, the four tanks located at 61st and Sheridan account for just over half of that capacity.

Project charter

			Revision No.:							
		WATER & SEWER DEPARTMENT	Date Created:	8/24/2017						
			Date Revised:							
	G Iulsa		Approved by:							
	A New Kind of Energy.	Six Sigma Info Gathering	Number:	Control #						
			Section:	Division/Section						
	W/8 C Dro	ject Info Gathering Checklist								
	W&S Pro	Ject mid Gathering Checklist								
		Nitrification Control in the Distrik	oution System to Re	duce Resource						
	Project Name	rements								
S	Date Project Initiated	August	24, 2017							
e			, -							
Team Members	Executive Sponsor:	Clayton Edward	ls, W&S Director							
le										
2										
an	Project Champion:	Jo Brown, WQA Manager								
Te										
	Black Belt Advisors:	Walter Miller, Eschelon LLC; Roby	n Unideme, OPSI Pr	oject Manager						
	Team Members:	Stefanie Hunter, Eric Lee	, Eric Parker, Meliss	a Gray						
	Process being evaluated:	Reducing nitrification exceedances	in Tulsa's water dis	tribution system						
	Process Owner(s) - Individual(s) responsible for the	Roy Foster, Water Supply Systems; Jo	Brown Water Oual	ity Assurance: Fric						
	business process being evaluated.	Parker, Water Distribution Systems								
SS		Improved drinking water quality to ut	ility customers, less	time expended on						
ö		remedial sampling, less water consume	d due to unnecessa	ry flushing, improved						
Å	Report: Inspection: Permit:]	compliance with Federal Regulations								
	Descent fields of further at the strend stands	Water Quality Assurance Field Staff, V	Vater Distribution N	laintenance Crews,						
	Process Stakeholders (Who will be affected by the potential outcome)	Water Supply, Engineering Inspectors,	, Contractors, Utility	Customers, TMUA,						
	potential outcome)	elected	officials							
Process	What is the output from the process? (e.g. work product? Report? Inspection? Permit?)	remedial sampling, less water consumed due to unnecessary flushin								

Project charter – roles

Sponsors	Name	Title
Executive Sponsor	Clayton Edwards	Water & Sewer Director
Project Champion	Jo Brown	Water Quality Assurance Manager
Project Owners	Roy Foster	Water Supply Manager
	Eric Parker	Water Distribution Systems Manager
	Jo Brown	Water Quality Assurance Manager
Master Black Belt	Walter Miller	Instructor
Black Belt	Penny Macias	Project Manager OPSI

Problem statement

Nitrification related water quality events in the distribution system can result in reduced disinfection levels (<1.0 mg/L total Cl2) and increased nitrite (>0.010 mg/L) levels. During the period of January 2013 – August 2017, there were 149 nitrification related events that required additional resources including multiple site visits, repeated sampling, and/or large amounts of treated water required to flush distribution lines and fill the multi-million gallon storage tanks that were drained.

Define phase – Project timeline

Define phase - SIPOC

Controlling Nitrification in the Distribution System

Define phase – RACI Chart

RACI Chart

R	Responsible	Person responsible for the task completion.
Α	Accountable	Person accountable for task being completed.
С	Consulted	Stakeholders or subject matter experts.
Т	Informed	Person receiving information from task.

	Project Team						Stakeholders															
Project: Nitrification Control in the Distribution System to Reduce Resource Requirements	Executive Sponsor - Clayton Edwards	Project Champion - Jo Brown	Master Black belt - Walter Miller	Black belt - Penny Macias	Project Manager - Melissa Gray	Stefanie Hunter	Eric Parker	Eric Lee	Benita Becton	Jhoanna Murray	Water & Sewer Department - Director	Water Supply - Water Treatment - A.B. Jewell WTP	Water Supply - Water Treatment - Mohawk WTP	Water Distribution - Mainline	Water Distribution - Operations	Water Quality Assurance	Engineering Services	Inside City Customers - Finished Water	Outside City Customers - Finished Water	Elected Officials	TMUA	ODEQ
Define and understand the Issue																						
Project Charter	С	С	С	С	R	Α	Α	А	I	1	I.	I	1	1	I	I	Т	-	-	-	I	-
High level Process Flowchart	С	С	С	С	А	А	R	А	1	1	1	1	1	1	1	1	-	-	-	-	-	-
SIPOC	С	С	С	С	А	R	А	А	1	1	1	1	1	1	1	1	-	-	-	-	-	-
RACI Chart/Communication Plan	С	С	С	С	Α	А	А	R	1	1	1	1	1	1	1	1	-	-	-	-	-	-
DMAIC draft development	С	С	С	С	R	R	А	А	1	I	1	1	1	1	1	1	-	-	-	-	-	-
Define Critical to Quality	С	С	С	С	R	А	Α	А	1	1	1	1	1	1	1	1	ł	-	-	-	-	-
Capture Voice of Customer	С	С	С	С	R	R	R	R	1	1	1	1	1	1	1	1	1	I	-	-	-	-
Discuss issue with Water Quality Assurance	С	С	С	С	R	А	Α	Α	1	1	1	1	1	1	1	С	1	-	-	-	-	-
Discuss issue with Water Supply	С	С	С	С	А	А	R	А	1	1	1	С	С	1	1	1	Т	-	-	-	-	-
Discuss issue with Water Distribution	С	С	С	С	А	А	R	А	1	1	1	1	1	С	С	1	С	-	-	-	-	-
Discuss issue with Elected Officials	С	С	С	С	А	А	А	R	1	1	1	Т	1	1	1	1	Т	-	-	С	-	-
Survey External Customers	С	С	С	С	А	А	Α	R	1	1	1	1	1	1	1	1	1	-	-	С	-	-
Define Phase Tollgate Review	С	С	С	С	R	R	R	R	А	А	-	-	-	-	-	-	-	-	-	-	-	-

Define phase – Voice of the Customer and Critical to Quality

Critical to Quality

Define phase – Communications plan

Communications Plan											
Stakeholder	Objective	Message	Delivery	Frequency	Timing	Responsibility	Feedback				
			Written report				1. In person				
Executive Sponsor -	Provide support to BB team		at end of each		Within one week of		2. Email				
Clayton Edwards	and key stakeholders	Status update	phase	End of each phase	completion	BB Team	3. At meetings				
			Written report				1. In person				
Project Chamption -	Provide support to BB team		at end of each		Within one week of		2. Email				
Jo Brown	and key stakeholders	Status update	phase	End of each phase	completion	BB Team	3. At meetings				
				1. As needed							
Master Blackbelt -				2. At beginning and	Within one week of						
Walter Miller	Provide support to BB team	Status update	Email	end of each phase	completion	BB Team	Email				
							1. In person				
Blackbelt - Penny			1. In person		Within one week of		2. Email				
Macias	Provide support to BB team	Status update	2. Email	Bi-weekly	completion	BB Team	3. At meetings				
							1. In person				
Project Manager -			1. In person				2. Email				
Melissa Gray	Manage BB project	Teamwork	2. Email	Weekly	At each meeting	BB Team	3. At meetings				
							1. In person				
			1. In person				2. Email				
Stefanie Hunter	Contribute to BB project	Teamwork	2. Email	Weekly	At each meeting	BB Team	3. At meetings				
							1. In person				
			1. In person				2. Email				
Eric Parker	Contribute to BB project	Teamwork	2. Email	Weekly	At each meeting	BB Team	3. At meetings				
							1. In person				
			1. In person				2. Email				
Eric Lee	Contribute to BB project	Teamwork	2. Email	Weekly	At each meeting	BB Team	3. At meetings				
							1. In person				
			1. In person				2. Email				
Benita Becton	Contribute to BB project	Teamwork	2. Email	Weekly	At each meeting	BB Team	3. At meetings				
							1. In person				
			1. In person				2. Email				
Jhoanna Murray	Contribute to BB project	Teamwork	2. Email	Weekly	At each meeting	BB Team	3. At meetings				

Measure Phase

Measure phase

Measure phase – Sigma level

21

Measure phase – Water tank levels

22

Measure phase – Valves

Measure phase

Valves Inspected 2012-2017

Measure phase – Flushing dead-end water lines

Totals for Year 2017										
Month	Dead-end lines	Other								
January	222,460	638,700								
February	249,397	498,000								
March	69,555	540,025								
April	172,190	51,000								
May	417,085	143,560								
June	186,377	1,045,800								
July	194,425	710,818								
August	586,930	1,319,800								
September	325,707	709,547								
October	294,025	1,106,500								
November	385,735	716,000								
December	569,986	810,500								
TOTAL GALLONS	3,673,872	8,290,250								

Analyze Phase

Nitrification Related Sampling Events Per Month 2013-2017

Analyze phase – Pareto chart

Analyze phase – Nitrification events in a Pareto chart

Nitrification Contributing Factors 2013-2017

Analyze phase – Process map

Analyze phase – Fishbone

Analyze phase – Water age and events

32

Analyze phase – Root cause

Improve Phase

Improve phase – Focus group & Affinity diagram

Improve phase – Focus group results

Contributing Factors as Identified by Front-Line Employees

Improve phase – Using survey results

- Focus Group and survey results Water Distribution, Water Supply, Quality Assurance, Engineering Services
 - Employees feel a high standard of water quality exists in the City of Tulsa
 - Few employees felt they directly impacted water quality in the system
 - Many employees not aware of water quality indicators or how actions performed in the distribution system can directly affect water age and quality

Improve phase – Solution selection method

- Using results of focus group, survey, fishbone diagram (Ishikawa), etc., the primary contributing factors are:
 - Water age
 - Water temperature
 - Employee (and contractor) knowledge
- The solution is:
 - Optimizing control of storage tank levels
 - Error proof (poka-yoke) valve opening and closing procedures
 - Employee education and training

Control Phase

Control phase – Plant standard operating guideline (SOG) and plant controls

	MOHAWK STANDARD OPERATING GUIDELINES (SOGs)	Revision No.:	
		Date Created:	01/18/2018
		Date Revised:	
	Sheridan Level Control	Approved by:	D. Davis/E. Prock
A New Kind of Energy.		Number:	MOH
		Section:	PROCESS/EQUIPMENT

Introduction

The four storage tanks located at 61st and Sheridan account for slightly greater than half of the City's available storage capacity. The treatment plants use these tanks to gauge system demand then increase, or decrease, production to meet current needs. When tank levels decrease to a certain level, the plants will increase production. When the tanks reach an upper limit level, the plants decrease production.

Summary of Procedure

During the months of June through October, Sheridan Tank No. 4 level is to be cycled between 12 and 24 feet, over a 3-day period. This means that the level should increase from 12 feet to 24 feet within 3 days, followed by a decrease to 12 feet over the next 3 days. In order to achieve this goal an average draft rate of 4 feet per day must be achieved.

Control phase – Monitoring Sheridan tank levels

Control phase – Utilizing technology to monitor water system activity

Control phase – Monitoring flows and tank levels in Hach WIMS

1 2 3 4 5 00 6 0 7 00 8 00 9 0 4 10 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 10 1	A 0:00 1:00 2:00 3:00 4:00 5:00 6:00	ABJ West Ht Flow, MGD 35.05 35.05 35.96 36.04 35.90	I U I	D	E 5, 2018		G	H H Tank No. 1	idan
1 2 3 4 5 00 6 0 7 00 8 00 9 0 4 10 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 10 1	A 0:00 1:00 2:00 3:00 4:00 5:00 6:00	ABJ West He Flow, MGD 35.05 35.05 35.96 36.04 35.90	C PSI 123 123 124	D Jan 1 ABJ East He Flow, MGD 24.73 25.29	5, 2018 eader PSI	F	G	H	idan
1 2 3 4 5 00 6 0 7 00 8 00 9 0 4 10 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 10 1	A 0:00 1:00 2:00 3:00 4:00 5:00 6:00	B ABJ West Ho Flow, MGD 35.05 35.05 35.96 36.04 35.90	eader PSI 123 123 124	Jan 18 ABJ East He Flow, MGD 24.73 25.29	5, 2018 eader PSI	Moha	wk	Sher	
1 2 3 4 5 00 6 0'' 7 02 8 03 9 04 10 02 11 04 12 07 13 04 14 05	0:00 1:00 2:00 3:00 4:00 5:00 6:00	ABJ West He Flow, MGD 35.05 35.05 35.96 36.04 35.90	eader PSI 123 123 124	Jan 18 ABJ East He Flow, MGD 24.73 25.29	5, 2018 eader PSI	Moha	wk	Sher	
2 3 4 5 01 6 0 7 02 8 02 9 04 10 02 11 00 12 07 13 04 14 05 14 05 04 05 05 06 06 07 05 06 06 07 07 05 06 06 07 07 05 06 06 07 07 05 06 06 07 07 05 06 06 06 06 06 06 07 05 06 06 06 06 06 06 06 06 06 06	1:00 2:00 3:00 4:00 5:00 6:00	Flow, MGD 35.05 35.05 35.96 36.04 35.90	PSI 123 123 124	ABJ East He Flow, MGD 24.73 25.29	eader PSI				
3 4 5 01 6 0 7 02 8 03 9 04 10 02 11 00 12 07 13 04 14 03	1:00 2:00 3:00 4:00 5:00 6:00	Flow, MGD 35.05 35.05 35.96 36.04 35.90	PSI 123 123 124	Flow, MGD 24.73 25.29	PSI				
4 5 00 6 0 7 0 8 0 9 0 4 10 0 11 0 12 0 13 0 14 0	1:00 2:00 3:00 4:00 5:00 6:00	Flow, MGD 35.05 35.05 35.96 36.04 35.90	PSI 123 123 124	Flow, MGD 24.73 25.29	PSI				
6 0 [°] 7 0 [°] 8 0 [°] 9 0 ⁴ 10 0 [°] 11 0 [°] 12 0 [°] 13 0 [°] 14 0 [°]	1:00 2:00 3:00 4:00 5:00 6:00	35.05 35.96 36.04 35.90	123 124	25.29	123				
7 02 8 02 9 04 10 09 11 04 12 07 13 04 14 09	2:00 3:00 4:00 5:00 6:00	35.96 36.04 35.90	124			37.67	121.60	38.72	22.51
7 02 8 03 9 04 10 03 11 04 12 07 13 04 14 05	3:00 4:00 5:00 6:00	36.04 35.90		00.70	123	37.33	123.10	39.45	23.20
9 04 10 05 11 04 12 07 13 04 14 05	4:00 5:00 6:00	35.90	124	26.72	125	37.20	123.60	40.32	24.20
10 0 11 0 12 0 13 0 14 0	5:00 6:00			24.99	125	34.24	123.40	41.02	24.79
11 00 12 07 13 00 14 09	6:00		125	25.27	126	37.06	124.50	41.78	25.48
12 0 13 0 14 0		36.90	124	25.79	125	37.04	124.70	42.29	25.98
13 03 14 03	7.00	36.51	124	26.05	125	37.14	124.00	42.97	26.74
14 0	7:00	36.23	124	25.22	125	37.43	123.80	43.29	27.02
	8:00	36.45	124	26.37	125	37.30	123.60	43.37	27.07
16 10	9:00	36.68	124	26.16	125	37.11	124.20	43.64	27.42
	0:00	36.54	124	26.30	125	37.22	124.00	43.68	27.46
16 11	1:00	36.63	124	25.22	125	37.08	124.40	43.76	27.53
	2:00	36.82	124	26.10	125	37.20	124.50	43.76	27.53
	3:00	34.77	124	25.48	125	37.27	124.10	44.05	27.85
	4:00	35.21	124	24.98	125	37.34	124.40	44.18	27.88
	5:00	35.52	123	25.27	125	37.30	123.90	44.31	27.94
	6:00	35.62	124	25.40	125	37.42	123.80	44.32	27.94
	7:00	35.86	124	26.38	125	37.12	124.80	44.35	28.00
	8:00	36.16	124	26.87	126	37.08	124.70	44.47	28.10
	9:00	36.68	125	25.11	126	37.11	124.90	44.57	28.24
	0:00	35.41	124	25.46	125	37.00	125.04	44.59	28.25
_	1:00	35.46	124	24.92	125	37.03	124.93	44.87	28.50
_	2:00	35.40	125	24.77	126 126	37.09	124.97	45.22	28.97
	3:00	34.97	125	24.91	126	37.04	125.10	45.32	28.98
29									
30			9	heridan Tank L	avel Tree	ade			
31 32			5	ueriuan Tank L	ever frei	103			
33	48.0 1								
34	45.7				() () () () () () () () () () () () () (
35	43.4								_
36	41.1								
37	38.9								
38	36.6								
39	34.3								
40	29.7								
41	27.4				_				
42	25.1		-						
43	22.9								
44	20.6								
45	18.3								
46	16.0								

Control phase – Valve opening and closing procedures, valve tracking

- Debris caps pilot program phased-in approach for Water Distribution mainline crews and contractors
 - Cost: \$8,990 (\$58/cap, 5 per crew, 31 crews)
 - Rollout: starting in Spring
- Pilot program to include training, communication and deployment plan
- Utilize Lucity computerized maintenance management system – to track valve positions

Control phase – Technology to track valve positions

Control phase – Employee education and knowledge

- Training program on tank standard operating guidelines treatment plant operators
- Training program on valve operations Water Distribution Systems operators, Field Engineering inspectors and contractors
- Nitrification education/water quality education chloramines
- Pocket color wheels \$80/each tools and training for chlorine analysis (program cost is \$2,480)

Control phase – Sigma level

- We are 3.68σ level goal is to be at a 4.0σ level within 4 years
- Reduction of nitrification related sampling events of approximately 30 per year (149 total events over five years) to an average of 13 per year (62 total events over four years)
- Cost Savings included on next slide

Nitrification Control in the Distribution System Savi	ngs	
FY 17 Nitrification Related Investigations		25
FY17 Repeat Site Visits		225
FY17 Budget Investigation Costs		
Salaries & Benefits		\$27,000
Materials & Supplies		\$4,000
Other Services		\$10,000
Capital		-
TOTAL SITE VISIT COST		\$41,000
Water Tank Drainage Cost		
Treatment cost/million gallons of water		\$170
Millions of gallons drained		14
TOTAL WATER DRAINAGE COST		\$2,000
Water Flushing Cost		
Total hours flushed		450
Millions of gallons flushed		27
TOTAL WATER FLUSHING COST		\$5,000
FY17 Nitrification Cost Including Overheard		
Site Visit Cost		\$41,000
Water Tank Drainage		\$2,000
Water Flushing Cost		\$5,000
FY17 Nitrification Events Cost		\$48,000
30% Overhead		\$14,000
TOTAL YEARLY COST		\$62,000
Estimated Yearly Cost Savings		
30% expenditure reduction to reach a 3.7 σ level	FY19	\$19,000
35% expenditure reduction to reach a 3.8 σ level	FY20	\$22,000
40% expenditure reduction to reach a 3.9 σ level	FY21	\$25,000
4.0σ level	FY22	\$30,000
Total Project Cost Savings		\$96,000
Total Project Costs		\$11,470
TOTAL NET PROJECT COST SAVINGS		\$84,530

Black belt project – Lessons learned

- BB Certification has allowed the application of the LSS tools – valuable experience that we will use for continual improvement
- Recruiting Green Belt members to assist strengthened the team effort
- TMUA and UEI set the framework for LSS implementation
 - Data management tools
 - Strategic planning
 - Top down support

Reference material

- City of Tulsa Nitrification Control and Response Plan rev3 February 2017
- EPA, Office of Water (4601M) Distribution System Issue Paper: Nitrification
- AWWA M56 Manual: Fundamentals and Control of Nitrification in Chloraminated Drinking Water Distribution Systems
- AWWA M68 Manual: Water Quality in Distribution Systems

Don't want to be a farmer working in the sun Don't want to be an outlaw always on the run Don't want to be a climber reaching for the top Don't want to be anything where I don't know when to stop

> A dream it's true But I'd see it through If I could be Wasting my time with you

From the song "Waste" by Phish

THANK YOU!

